alias Universal Harmony DÉRIVÉE PARTIELLE DU DISCRIMINANT D'UNE ÉQUATION DU SECOND DEGRÉ, ATP COSMIQUE, **COUPLES (5; 2) ET (2; 8)** Fiche: 32 ptembre 2020 Joseph DJOGBÉDÉ

Chercheur indépendant

Le Code UH

alias Universal Harmony

DÉRIVÉE PARTIELLE DU DISCRIMINANT D'UNE ÉQUATION DU SECOND DEGRÉ, ATP COSMIQUE, COUPLES (5; 2) ET (2; 8)

Fiche: 32

Toute reproduction, même partielle, de cet ouvrage est rigoureusement interdite. Une copie ou reproduction par quelque procédé que ce soit, photographique, microfilm, bande magnétique, disque ou autre, constitue une contrefaçon passible des peines prévues par la loi 84-003 du 15 mars 1984 relative à la protection du droit d'auteur en République du Bénin.

Septembre 2020

Joseph DJOGBÉDÉ

Chercheur indépendant

Tel: (+229) 95 02 60 52/96 85 23 28

Email: josdjogbede@yahoo.fr

Notre connexion avec l'univers est si étonnamment calculée par la Sagesse Divine que nous n'avons aucune compétence de la réformer!

Joseph DJOGBEDE

$$U(X;Y) = (X+Y) + (X.Y) + (X^Y) + (Y^X)$$

Observation: t(X) = X(X+1)/2

1. Quelles relations existent entre les paramètres de la somme théosophique, la somme et le produit des racines d'une équation du second degré ?

$$t(x) = x(x+1)/2 = C$$
 et $X^2 - Sx + P = 0$

1)
$$t(x) = x(x+1)/2 = C = > X^2 + x - 2C = 0$$

2)
$$X^2 - Sx + P = 0$$

$$X^{2} + x - 2C = X^{2} - Sx + P ==>$$
 $X^{2} + x - 2C - (X^{2} - Sx + P) = 0 ==>$
 $X^{2} + x - 2C - X^{2} + Sx - P = 0 ==>$
 $X - 2C + SX - P = 0 ==>$
 $X (1+S) = P + 2C$

Pour que cela soit valable pour tout X on doit avoir 0.X = 0

Autrement dit:

1)
$$1+S=0$$

2)
$$P + 2C = 0$$

$$>$$
 1+ S = 0 ==> S = -1

Si S = -1 alors

$$X^{2} - Sx + P = 0 ==> X^{2} + X + P = 0$$

 $X^{2} + X + P = 0 ==>$

$$\Delta = (1)^2 - 4(1 \times P) = 1 - 4 P = \Delta = 1 - 4 P$$

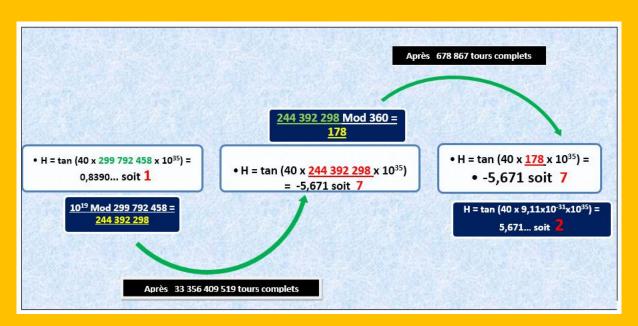
$$\Delta = 1 - 4 P = 0 \implies P = 1/4$$

> P+ 2C = 0

P+ 2C = 0 ==> C = - P/2 = -1/2 x 1/4 = - 1/8
$$C = -1/8 \equiv 8/8 \equiv 1$$

$$C \equiv 1$$

Au total:


$$P = \frac{1}{4}$$
 $C \equiv 1$ $S = -1$

Qui correspond aussi à :

$$P \equiv 7$$
 $C \equiv 1$ $S = 8$

Observations:

- 1. Des ondes électromagnétiques à l'électron : explication de l'échelle de l'harmonie universelle
- 2. Liste des vitamines

Des ondes électromagnétiques à l'électron : explication de l'échelle de l'harmonie universelle

N°	Produit	Formule	Z	M	Z'	M'	Observations
1	Vitamine B3 (Vitamine PP, Acide nicotinique , Niacine)	C ₆ H ₅ NO ₂	64	123,1105	1	4	
2	Vitamine B6 ou Pyridoxine	C ₈ H ₁₁ NO ₃	90	169,1789	9	5	
3	Vitamine K3 ou Ménadione	C ₁₁ H ₈ O ₂	90	172,1822	9	5	
4	Vitamine C ou acide L-ascorbique	C ₆ H ₈ O ₆	92	176,1232	2	4	
5	Vitamine B5 ou Acide pantothénique	C9H17NO5	118	219,2353	1	7	
6	Vitamine B8 (Vitamine H, Coenzyme R, Biotine)	$C_{10}H_{16}N_2O_3S$	130	244,3124	4	2	
7	Vitamine A2	C ₂₀ H ₂₈ O	156	284,4402	3	6	
8	Vitamine A1 (rétinol)	C ₂₀ H ₃₀ O	158	286,4560	5	4	
9	Vitamine B1 (Thiamine)	C ₁₂ H ₁₇ ClN ₄ OS	158	300,8113	5	7	
10	Vitamine B2 (Riboflavine, Lactoflavine)	$C_{17}H_{20}N_4O_6$	198	376,3670	9	5	
11	Vitamine D3 ou Cholécalciférol	C ₂₇ H ₄₄ O	214	384,6436	7	7	
12	Vitamine D2 ou Ergocalciférol	C ₂₈ H ₄₄ O	220	396,6546	4	3	Cytosine (C)
13	Vitamine D4	C ₂₈ H ₄₆ O	222	398,6704	6	1	
14-4	Delta-tocophérol (Vitamine E)	C ₂₇ H ₄₆ O ₂	224	402,6584	8	2	
15	Vitamine B9 ou Acide folique	C ₁₉ H ₁₉ N ₇ O ₆	230	441,4021	5	7	
14-2	Bêta-tocophérol (Vitamine E)	C ₂₈ H ₄₈ O ₂	232	416,6852	7	5	
14-3	Gamma-tocophérol (Vitamine E)	C ₂₈ H ₄₈ O ₂	232	416,6852	7	5	
14-1	Alpha-tocophérol (Vitamine E)	C ₂₉ H ₅₀ O ₂	240	430,7120	6	8	
16	Vitamine K1 ou phylloquinone ou phytoménadione	C ₃₁ H ₄₆ O ₂	248	450,7024	5	4	
17	Vitamine K2 ou Ménaquinone 7	C ₄₆ H ₆₄ O ₂	356	649,0096	5	7	
18	Vitamine B12 (Cyanocobalamine)	C ₆₃ H ₈₈ CoN ₁₄ O ₁₄ P	718	1355,3792	7	8	Adénine (A)
	Equipe des vitamines		4 390	8095,419700	115	106	
	Réduction		7	7	7	7	

Liste des vitamines

Pas de M = 9

2. Variation du discriminant par rapport à la somme S et au produit P des racines

$$X^{2} - Sx + P = 0$$

 $\Delta = (-S)^{2} - 4(1x P) = = (-S)^{2} - 4P = =>$
 $\Delta = (-S)^{2} - 4P$

N°	Par rapport à S	Par rapport à P	Observation
1	$d\Delta/dS = -2S$	$d\Delta/dP = -4$	$\sum 4F(2;7) = 20 = 2$
	Pour S = -1 ==> $d\Delta/dS = 2$	$d\Delta/dP = -4 \equiv 5$	
2	$d\Delta/dS^2 = -2$	$d\Delta/dP^2 = 0$	54F(5;9) = 31 = 4
	$d\Delta/dS^2 = -2 \equiv 7$	$d\Delta/dP^2 = 0 \equiv 9$	
Obs.	$\sum 4F(2;5) = 20 = 2$	$\sum 4F(7;9) = 26 = 8$	∑4F (2;4) ≡ 28 ≡ 1
			$\sum 4F(2;8) = 13 = 4$

3. Résolution des deux équations équivalentes

$X^2 + X + 1/4 = 0$ ($X^2 - SX + P = 0$ Pour S = -1 et P = 1/4)

Résolution ordinaire:

$$\Delta = (1)^2 - 4(1x(1/4)) = 0 \equiv 9$$

$$\Delta^{\wedge} (1/2) = (9) \wedge (1/2) = 3$$
 Ou $\Delta^{\wedge} (1/2) = (0) \wedge (1/2) = 0$
 $X' = (+1+3)/2 = 2$ ou $X' = (+1+0)/2 = +0,5 \equiv 5$
 $X'' = (+1-3)/2 = -1 \equiv 8$ ou $X'' = (+1-0)/2 = 0,5 \equiv 5$

Résolution par méthode des fréquences :

$$\Delta = (1)^2 - 4(1x(-2)) = 9$$

$$\Delta^{\wedge}$$
 (1/2) = (9) $^{\wedge}$ (1/2) = 9 $^{\wedge}$ 5 = 59049 \equiv 9 ou Δ^{\wedge} (1/2) = (0) $^{\wedge}$ (1/2) = 0 $^{\wedge}$ 5 \equiv 0
 $X' = (1+9)/2 = 10/2 = 5$ ou $X' = (+1+0)/2 = 0,5 \equiv 5$
 $X'' = (1-9)/2 = -8/2 = -4 \equiv 5$ ou $X'' = (+1-0)/2 = 0,5 \equiv 5$

4. ATP cosmique et humain

> Résolution ordinaire :

$$X' = 4$$
 et $X'' = 4 ==>$ (Somme; Produit) = (8; 16) = (8; 7)

$$X' = 1$$
 et $X'' = 7 ==>$ (Somme; Produit) = (8; 7) = (8; 7)

Méthode des fréquences:

$$X' = 4$$
 et $X'' = 4 ==> (Somme ; Produit) = (8; 16) = (8; 7)$

$$X' = 4$$
 et $X'' = 4 ==>$ (Somme; Produit) = (8; 16) = (8; 7)

5. Concordance des deux équations

$$X^2 + X - 2 = 0$$

$$X^2 + X + 1/4 = 0$$

Au fait ces deux équations sont identiques si l'on considère les fréquences.

En effet $1/4 = 0.25 \equiv 7$

Et puisque = - **2 ≡ 7**

Ainsi on pouvait écrire les deux comme suit :

$$X^2 + X + 7 = 0$$

$$X^2 + X + 7 = 0$$

Pour X = 0 ou X = 9

On retrouve le couple mythique (7;7)

$$X^2 + X + 7 = 0$$
 = $0^2 + 0 + 7 = 7$

$$X^2 + X + 7 = 0$$
 = $0^2 + 0 + 7 = 7$