Le Code UH

alias Universal Harmony

LES 4 MOLÉCULES DES 10 CASES ROUGES ET L'ORIGINE DES BASES ADN

Fiche: 53

Décembre 2020

Joseph DJOGBÉDÉ

Chercheur indépendant

Le Code UH

alias Universal Harmony

LES 4 MOLÉCULES DES 10 CASES ROUGES ET L'ORIGINE DES BASES ADN

Fiche: 53

Toute reproduction, même partielle, de cet ouvrage est rigoureusement interdite. Une copie ou reproduction par quelque procédé que ce soit, photographique, microfilm, bande magnétique, disque ou autre, constitue une contrefaçon passible des peines prévues par la loi 84-003 du 15 mars 1984 relative à la protection du droit d'auteur en République du Bénin.

Décembre 2020

Joseph DJOGBÉDÉ

Chercheur indépendant

<u>Tel:</u> (+229) 95 02 60 52/96 85 23 28

Email: josdjogbede@yahoo.fr

Notre connexion avec l'univers est si étonnamment calculée par la Sagesse Divine que nous n'avons aucune compétence de la réformer !

Joseph DJOGBEDE

$$U(X; Y) = (X+Y) + (X.Y) + (X^Y) + (Y^X)$$

Observation: t(X) = X(X+1)/2

LES 4 MOLÉCULES DES 10 CASES ROUGES ET L'ORIGINE DES BASES ADN

1. Les 4 molécules des 10 cases rouges : 2 acides aminés + 2 vitamines

N°	Produit	Formule	Catégorie	Z	M	Z'	M'	Couleurs (M; Z)
1	Arginine*	$C_6H_{14}N_4O_2$	Acide aminé	94	174,2026	4	4	rouge
2	Cystéine	C ₃ H ₇ NO ₂ S	Acide aminé	64	121,1583	1	3	jaune
3	Vitamine A2	$C_{20}H_{28}O$	Vitamine	156	284,4402	3	6	vert
4	Vitamine B8 (Vitamine H, Coenzyme R, Biotine)	$C_{10}H_{16}N_2O_3S$	Vitamine	130	244,3124	4	2	vert
TOTAL				444	824,11350	12	15	
≡				3	6	3	6	

2. Les quatre fonctions cachées des 4 molécules des 10 cases rouges

N° Case	Dans corps ?	Z	M	Z' + M'	Z' x M'	Z' ^ M'	M'^ Z'	4F	Réduction	Couleurs (M; Z)
3	vide	1	3	4	3	1	3	11	2	jaune
24	vide	3	6	9	18	729	216	972	0	vert
29	vide	4	2	6	8	16	16	46	1	vert
31	vide	4	4	8	16	256	256	536	5	rouge
Somme (87)		12	15	27	45	1002	491	1565	8	
Réduction		3	6	9	9	3	5	8	8	

≡

N° Case	Dans corps ?	Z	M	Mod(Z' + M')	Mod(Z' x M')	Mod(Z' ^ M')	Mod(M'^ Z')	4F	Réduction	Couleurs (M; Z)
3	vide	1	3	4	3	1	3	11	2	jaune
24	vide	3	6	9	9	9	9	36	0	vert
29	vide	4	2	6	8	7	7	28	1	vert
31	vide	4	4	8	7	4	4	23	5	rouge
Somme (87)		12	15	27	27	21	23	98	8	
Réduction		3	6	9	9	3	5	8	8	

3. <u>Le décryptage des couleurs Vert-Jaune-Rouge des 5 molécules des 10 cases rouges</u>

Syntjhèse couleurs

Somme (S) Produit (P)

Z	M
3	6

Observation: Le nombre 121 rappelle le DISCRINANT (Δ) DE l'équations $X^2 - 81X + 1610 = 0$

$$\text{ou } X^2 - 9X + 8 = 0 \\ \text{ou } X^2 - 9X + 8 = 0 \\ \text{ou } X^2 + 8 = 0 \\ \text{ou } X^2 - 1 = 0 \\ \text{ou } (X-1)(X+1) = 0 \\ \text{ou } X^2 - 1 = 0 \\ \text{ou } (X-1)(X+1) = 0 \\ \text{ou } X^2 - 1 = 0 \\ \text{ou } (X-1)(X+1) = 0 \\ \text{ou } X^2 - 1 = 0 \\ \text{ou } (X-1)(X+1) = 0 \\ \text{ou } X^2 - 1 = 0 \\ \text{ou } (X-1)(X+1) = 0 \\ \text{ou } X^2 - 1 = 0 \\ \text{ou } (X-1)(X+1) = 0 \\ \text{ou } X^2 - 1 = 0 \\ \text{ou } (X-1)(X+1) = 0 \\ \text{ou } X^2 - 1 = 0 \\ \text{ou } (X-1)(X+1) = 0 \\ \text{ou } X^2 - 1 = 0 \\ \text{ou } (X-1)(X+1) = 0 \\ \text{ou } X^2 - 1 = 0 \\ \text{ou } (X-1)(X+1) = 0 \\ \text{ou } X^2 - 1 = 0 \\ \text{ou } (X-1)(X+1) = 0 \\ \text{ou } X^2 - 1 = 0 \\ \text{ou } (X-1)(X+1) = 0 \\ \text{ou } X^2 - 1 = 0 \\ \text{ou } (X-1)(X+1) = 0 \\ \text{ou } X^2 - 1 = 0 \\ \text{ou } (X-1)(X+1) = 0 \\ \text{ou } X^2 - 1 = 0 \\ \text{ou } (X-1)(X+1) = 0 \\ \text{ou } X^2 - 1 = 0 \\ \text{ou } (X-1)(X+1) = 0 \\ \text{ou } X^2 - 1 = 0 \\ \text{ou } (X-1)(X+1) = 0 \\ \text{ou } X^2 - 1 = 0 \\ \text{ou } (X-1)(X+1) = 0 \\ \text{ou } ($$

Ou
$$X^2 - 9X + 8 = 0$$

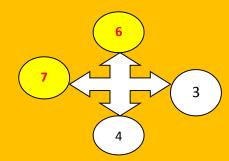
ou
$$X^2 + 8 = 0$$

ou
$$X^2 - 1 = 0$$

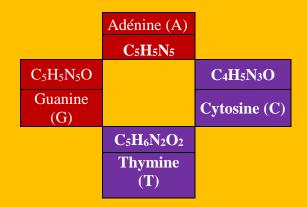
ou
$$(X-1)(X+1) =$$

4. L'équation du second degré correspondante et la création des 4 bases ADN

$$X^{2} - 4 X + 2 = 0 (S= 4 \text{ et } P = 2)$$


$$\frac{\text{Résolution des fréquences}}{\Delta = (-4)^{2} - 4(1x 2) = 16 - 8 = 8 \text{ ou}}$$

$$\Delta = (5)^{2} - 4(1x 2) = 25 - 8 = 17 \equiv 8$$


$$\Delta = 8 = \Delta^{4}(1/2) \equiv 8^{4} \equiv 8$$

$$X' = (+4+8)/2 = 12/2 = 6 \equiv 6$$

$$X'' = (+4-8)/2 = -4/2 = -2 \equiv 7$$

Les 4 fonctions cachées des 4 bases ADN

N°	Éléments	Noms éléments	Z	M	Z'	M'	Z+M	ZxM	Z^M	M^Z	4F	≣
1	Adénine (A)	C ₅ H ₅ N ₅	70	135,1295	7	8	15	56	5 764 801	2 097 152	7 862 024	2
2	Thymine (T)	C ₅ H ₆ N ₂ O ₂	66	126,1144	3	1	4	3	3	1	11	2
3	Cytosine (C)	C ₄ H ₅ N ₃ O	58	111,1035	4	3	7	12	64	81	164	2
4	Guanine (G)	C ₅ H ₅ N ₅ O	78	151,1285	6	5	11	30	7 776	15 625	23 442	6
Total	Les 4 bases ADN		272	523,4759	20	17	37	101	5 772 644	2 112 859	7 885 641	3
	≡		2	8	2	8	1	2	8	1	3	3